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Incorporating climate into distribution and abundance indices for stock assessment: 
looking into the past and planning for the future  

Principal Investigators: Tim Miller, NOAA NE Fisheries Science Center; Christine N. Meynard, 
David M. Kaplan &Robert Latour, Virginia Institute of Marine Science, College of William & 
Mary 

Background: Climate is one of the main drivers in determining species distributions. Species 
range shifts related to climate change have been well documented in many contexts, with marine 
systems showing higher rates of shifts than terrestrial systems (Cheung et al. 2009, Doney et al. 
2012, Pinsky et al. 2013). Predicting species distributions from climate data has become a major 
tenet in ecology, and one of the few areas that has developed concise statistical strategies in the 
context of predictive ecology (Dawson et al. 2011, Bellard et al. 2012). One of the most common 
tools in this field is statistical species distribution models (SDMs) that correlate species 
occurrence data (presence-absence) with environmental factors such as temperature and salinity. 
This strategy usually involves collecting opportunistic presence-absence data from different 
sources, sometimes meaning loss of information, such as when abundance data are converted 
into presence-absence to fit into the modeling framework, or to be combined with other sources 
of data. This step is often necessary given the lack of systematic and standardized survey data 
across a large portion of a species range. Presence-absence data are then correlated to 
environmental gradients to characterize the species range, and the resulting output of these 
models is a spatially-explicit estimation of either a probability of occurrence or a suitability 
index, either of which can be translated into a simplified range map (i.e., a map of predictions of 
presences and absences; Guisan and Thuiller 2005). These simplifications allow locating range 
shift patterns at large scales, but do not show abundance patterns within the range. This approach 
has become incredibly useful as a forecasting tool since it allows studying the potential effects of 
different climate change scenarios on individual species and on biodiversity at large (Cheung et 
al. 2009, 2010, Albouy et al. 2014). For example, Robinson et al. (2015) used SDMs to study 
how different climate change scenarios would affect nine large pelagic species in eastern 
Australia, and found that the trailing edge is likely to shift at a faster rate than the leading edge. 
Cheung et al. (2010) used an SDM framework in which the relative abundances of more than a 
thousand globally important commercial fishes and invertebrate species were translated into a 
suitability scale and related to environmental gradients to predict the potential effects of climate 
change scenarios on their distribution. They showed that these important fisheries are going to 
suffer large redistributions across the globe affecting food security in vulnerable areas and 
requiring the adaptation of fisheries to such changes. More recently, Albouy et al. (2015) used 
SDMs to forecast the changes in distribution of 230 coastal Mediterranean fish species, including 
many of commercial importance, and look at the potential effects of such shifts on phylogenetic 
and functional diversity, which may in turn affect ecosystem services.  

Despite their centrality to predicting the effects of climate change on marine biota, results from 
SDMs are rarely integrated in fish stock assessments. This is in part because these correlative 
models usually ignore abundance patterns and predict a probability of occurrence that is not easy 
to relate to either abundance or to a concept of the species range that involves sustainable 
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populations (Ehrlen and Morris 2015). Some authors have also argued that looking at simple 
range shifts under climate change might not be enough. For example, Bell et al. (2015) argued 
that changes in fishing pressure throughout the range of a species could confound changes in 
distributions that are expected from temperature increases towards the poles, pointing out to the 
importance of relative abundance and size-frequency distributions across the range. In this 
context, they used the location of the center of biomass for different fish species as a better 
indicator of climate-related range shifts. Although this is an improvement over using simple 
presence-absence maps, since it would detect a poleward shift in the areas of higher abundance 
even in the absence of extinction and colonization of parts of the range, this is still a large 
simplification of reality where the whole abundance pattern is reduced to a single center of 
abundance. Understanding how abundance is distributed throughout the range of a species and 
what is likely to happen to that distribution is therefore important for developing a better 
understanding of the potential effects of climate change on availability of resources and on the 
fate of total biomass on important commercial fisheries. Spatially-explicit estimates of 
abundance over time can also help locate areas where populations are decreasing, increasing, or 
stable, but such information cannot be gathered using simple presence-absence SDMs (Ehrlen 
and Morris 2015).  Therefore, for realistic management applications, knowledge of the 
distribution of abundance within the species range is of very high priority. Knowing that the 
range is going to shift directionally is often not enough. 

Finding a relationship between SDM outputs (probability of occurrence or suitability) and 
abundance would help the integration of SDMs into many management applications, including 
fisheries stock assessments. In terrestrial systems, several comparative studies have tried to build 
on this relationship, but the results are mixed and often show idiosyncratic relationships 
(Jimenez-Valverde et al. 2009, Thuiller et al. 2014). For example, VanDerWal et al. (2009) 
modeled the relationship between suitability (as predicted by a presence-absence SDM approach) 
and local densities in 69 different species of vertebrates in Australia, and found predicted 
suitability could only relate to maximum densities. However, most communities showed values 
below this theoretical maximum, meaning that SDMs could not be used to estimate local 
densities. This is an important management shortcoming of SDMs and greatly reduces their 
applicability to advance management efforts in fisheries science. Although reliable information 
on species relative abundances over large geographic areas is rare, many long-term systematic 
survey efforts exist and have been under-studied with respect to spatial and temporal abundance 
trends. The time seems ripe to use such large-scale abundance data to understand not only 
species range shifts, but also spatial abundance patterns and how they have changed over time. 
This will also help us prepare for the future, particularly if we can understand how climate 
change is likely to affect the distribution of resources for relevant exploited species.   

Here we will adopt a pragmatic approach where abundance will be corrected by fishing pressure 
and used in a correlative modelling framework to understand its spatial variation, its relationship 
to different environmental gradients, and the likely effects of climate change scenarios on spatial 
and temporal variations. The main objectives of this project will be to investigate relationships of 
environmental gradients (e.g., sea-surface and sea-bottom temperatures, salinity, topography, 
distance to coast and to the Gulf Stream, productivity, currents) to abundance, and generate 
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temporally- and spatially-explicit predictions of abundance-at-size for five commercially 
important fish stocks on the United States northeast continental shelf. For stocks found to have 
abundance correlated to environmental gradients, we will also use the models to predict long-
term changes in distributions of abundance. Models will be developed and validated using past 
and present data, and used to predict long-term changes in distributions using different climate 
change scenarios. We will focus on yellowtail flounder, scup, black sea bass, red hake and 
Atlantic cod, as these are species that are regularly assessed, are reasonably well studied, and 
have different life history strategies. Furthermore, these species have been shown to have shifted 
their range in response to climate change (Nye et al. 2009, 2011, Bell et al. 2015).  

Approach: 

We will adopt a correlative approach to estimating annual spatial distributions of abundance-at-
size for each of the species considered. We will aim to identify major environmental drivers of 
the distribution of each species while controlling for fishing effects and will generate maps of 
estimated species abundances over time. The statistical relationships generated in this effort will 
be used to project into the future the potential impacts of climate change on species’ 
distributions. We will then study areas of consensus and uncertainties between approaches, and 
draw management implications from them by relating current and past patterns and results from 
stock assessments for each species. 

Data processing 

The NOAA Northeast Fisheries Science Center (NEFSC, Woods Hole, MA) annual surveys 
(1963-present) on the continental shelf from Nova Scotia to Cape Hatteras, NC, are ideal to 
develop and test such approaches. The surveys have extensive spatial and temporal coverage and 
use standardized methods that are independent of fisheries, thereby providing a rich dataset with 
which species relative abundances can be related to large-scale environmental gradients and 
temporal variability in those gradients. Furthermore, the surveys include species of wide 
economic interest for which an annual stock assessment is performed.  

We will divide the study area in an equal-area grid of 10 km x 10 km resolution. Survey data will 
be overlaid and averaged at this resolution for each season and year, and grid cells with little or 
no temporal or spatial sampling will be eliminated from the analysis for model calibration. This 
will filter out spatial locations with poor data (few sampling locations or few temporal replicates) 
and use only the best available information for model calibration. However, for model 
projections (hind-casting or forecasting), all grid cells will be considered unless they are located 
in areas with unique environmental conditions that are not represented by the survey (this is 
unlikely to eliminate a large number of grid cells due to the extremely long time-series and 
extensive spatial coverage of the survey). Notice that this grid-based spatial aggregation will 
provide a finer visualization of abundance patterns throughout the survey area, as compared to 
the strata used in stock assessments. However, for comparison purposes, grid cells can be 
aggregated by survey stratum. Environmental data will be summarized for each trawl survey at 
the same spatial resolution. Additional environmental data will be downloaded from the web, 
including from the Bio-ORACLE environmental dataset. This dataset includes current 
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conditions, as well as future climate change scenarios (Tyberghein et al. 2012). Other sources of 
environmental data include the MODIS Ocean website; NOAA’s world ocean database; 
NOAA’s GFDL and the IPCC data portal. Variables that can be obtained and have been 
previously used in the oceans to model species under climate change scenarios include sea 
surface temperature, bottom temperature, salinity, bathymetry, and ocean advection (Cheung et 
al. 2010, Albouy et al. 2012). Climate change scenarios considered will include the extreme 
cases where technology and people become aware and change their behavior to reduce climate 
change (optimistic B1 scenario), as well as the opposite extreme of little and slow global 
technological change and continued increase in population growth (pessimistic A2 scenario). 
Different temporal scales will be considered so that we can get an understanding of the 
importance and effects of environmental variability in the region. For example, the analysis of 
yearly data will be valuable for understanding the effects of temporal variability on abundances, 
whereas aggregating data by 5 or 10-year periods can help ignore transient dynamics and focus 
on the more general long-term trends in species distributions and abundances (e.g., poleward 
shifts in species ranges, centers of biomass, and changes in abundances across the range).  

To control for fishing mortality, we will include indices of fishing pressure as covariates in the 
statistical models. Fishing information is not available with the same precision and resolution as 
the environmental information. We will therefore use a coarse relative exploitation index as a 
proxy for fishing pressure (Nye et al. 2011). The spatial scale for the index may depend on the 
species investigated, but is essentially the catch data divided by the relative biomass estimated 
from the surveys. Although we recognize the limitations of this index, it is intended to use the 
best available estimates of fishing pressure without using assessment model output in subsequent 
analyses (e.g., Brooks and Deroba 2015). 

Correlative approach 

We will use a two-step process to model species relative abundances within each species’ range. 
In a first step, we will use presence-absence data to model the range of each species in the study 
area. This will delimit the external envelop within which relative abundances will be modeled, 
and will serve to minimize zero-inflation in the dataset used later for abundance modeling by 
eliminating areas of very marginal habitat or areas in which the species is always absent. At this 
stage we will use standard species distribution modeling techniques with an ensemble forecasting 
approach (Araujo and New 2007, Thuiller et al. 2009, Meynard et al. 2013). In this context, 70% 
of the presence-absence data will be used to calibrate different types of statistical models (GLM, 
GAM, classification trees, boosted regression trees, MAXENT and random forests are among 
some of the most common approaches). Model outputs will be checked for their performance in 
terms of classification rates (i.e., how well they predict presence-absence data) using the 
remaining 30% of the data and applying a threshold that maximizes classification rates on the 
probabilities of occurrence to generate presence-absence predictions. The best models will be 
retained for a consensus prediction that will be used as the perimeter of the species range, within 
which species relative abundances will be modeled in the next step. These distribution models 
will also be used to detect species distribution shifts over time.  
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In a second step, within each species range we will consider relative abundances by size as a 
response variable in a multiple regression approach. A mixed model (e.g., a generalized additive 
mixed model using mgcv in the statistical package R) will be used to consider temporal and 
spatial dependencies, as well as effects of environmental gradients, such as sea surface 
temperature, bottom temperature, salinity, topography (i.e., depth and heterogeneity), on species 
relative abundances by size. Since the surveys provide for temporal and spatial replication, we 
will use partial regressions to separate the effects of temporal variability versus spatial variability 
to obtain an understanding of their relative importance. This work will also allow us to identify 
the most relevant environmental gradients determining species abundances. We will also 
compare trends of annual aggregated predictions of relative abundance with the predicted 
relative abundance indices from assessment models to determine whether the predictions using 
the two approaches are correlated. Weak correlations of the currently used indices would suggest 
considering the environmentally driven indices, or other ways of incorporating the effects of 
these environmental gradients on distributions, within the assessment models. 

Benefits: 

This project would allow us to (1) develop a general modeling framework to integrate yearly 
abundance and catch data with environmental variables; (2) use hind-casting to test the models 
using the long-term time series into the past; (3) produce predictions into future climate change 
scenarios which are based on stages that can be compared to current stock assessment outputs; 
and (4) compare the results from this framework to the results of the respective stock 
assessments. Once the framework has been developed for a species, it can provide for a powerful 
forecasting tool to predict vulnerability and consequences of climate change on commercially 
important marine resources. Model outputs (relative abundances by size) could be used in 
fisheries stock assessments, potentially improving estimated population trends and productivity 
and subsequent management strategies in the face of different climate change scenarios. This 
work responds to the objectives of the NEFSC Strategic Science Plan to (1) improve the quality 
of stock assessments and other science-based advice and (2) improve understanding of the 
influence of climate on living marine resources in order to provide integrated scientific advice to 
managers. It also responds to several of the FATE RFP research objectives (Topics 1, 2, 4) by 
evaluating tools to investigate mechanisms driving interactions between fisheries and climate 
(Topic 1), developing spatial and temporal models to investigate climate effects on population 
distribution (Topic 2), and examining climate effects and fishing effects on commercially 
important fish stocks with an ability to forecast climate impacts on distribution (Topic 4). 

Deliverables:  This project will produce at least one scientific publication on the effect of 
environmental gradients on abundance of important commercial fisheries into past trends and 
another one looking into future climate change scenarios. We will produce a report for FATE 
highlighting the management and assessment implications, especially as they relate to planning 
ahead for climate change. This work will also be presented at the FATE annual conference, as 
well as in other relevant international conferences (possibly at ICES, AFS or ESA annual science 
conferences). Model outputs will be available by request, and the maps and models will be 
published as part of the scientific publications.   
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