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Background 

We are all aware that Earth’s climate is expected to change substantially in the next 50 years, 

with an increase in global mean temperature of as much as 1.6°C (1). How organisms and 

ecosystems respond to climate change will affect the productivity of harvested populations, 

biodiversity, and conservation of threatened species (2-3).  Predicting responses to climate 

change is therefore of critical importance.  The proposed work addresses this need by 

developing a robust framework for predicting demographic responses to climate change.  

 

Much current research on how climate change will influence organisms and ecosystems has 

focused on predicting shifts in primary productivity and species distributions (e.g., 3).  

However, for many marine species, although range shifts on the order of 10- 100 KM are likely 

these changes primarily reflect changes in the margins of populations -- The majority of the 

species’ range remains the same.  Thus, although range shifts are certainly important, we cannot 

afford to neglect the pervasive changes that will occur within the center of species’ ranges, such 

as shifts in relative abundance and other demographically relevant traits.   

 

For most of the species we manage (specifically those that are not highly migratory), 

management actions are typically restricted to fixed locations dictated by political boundaries 

rather than ecological relevance; such ‘management units’ are unlikely to move as ranges shift.  

There is, therefore, a clear need to predict the local effects of climate change on spatial scales 

that are relevant to management. 

 

Life history characters, such as maturation age, fecundity, and lifespan, are major determinants 

of population dynamics and sustainable harvest rates (e.g. 4).  However, predicting responses of 

these traits to climate change is typically feasible only for well-studied species or those with 

long-term data.  Since such data are not available for many species, there is a clear need to 

develop novel tools that allow us to leverage information across taxa while rigorously 

accounting for uncertainty in predicting responses to climate change.   

 

One possible framework for doing so comes from the metabolic theory of ecology (MTE, 5).  

The MTE postulates that physiological rates scale as the ¾ power of body mass and follow 

Boltzmann -Arrhenius temperature dependence with activation energies of approximately 0.6-

0.7 eV (e.g. 7).  There is considerable empirical support for the general predictions of the MTE 

and applications have ranged from explanations of developmental time, to macroecological 

patterns including global-scale analyses of trophic cascades, species diversity, population 

density, carbon turnover time (6-9).  However, to be useful in predicting local, species-specific 

responses to climate change, we need to know how temperature affects traits within species.  

However, most applications of the MTE have been fairly coarse, cross-species comparisons, 

leaving open the question of whether the MTE typically applies within species.   

 

Recently, we showed that across 74 ectotherm species, ranging from copepods and krill to fish, 

that within species the relationship between log-lifespan and the local mean temperature is 

consistent with predictions of the MTE (Figure 1, 10).  Although there is considerable variation 

among intercepts, the slopes of the regression lines are remarkably uniform.  Moreover, the 

distribution of slopes from field data is nearly identical with the distribution of slopes based on 



 2 

lab studies.  Thus, despite spatial variation in food availability, the diversity of predators, and 

local adaptation, the average relationship between temperature and lifespan is fairly predictable.   

 

 
This result suggests that it would not be totally unreasonable to use the MTE to make spatially-

explicit, worldwide predictions for changes in lifespan driven by anticipated warming over the 

next 50 years.  For example, using the Community Climate System Model’s 

(http://www.ccsm.ucar.edu) 10-year surface temperature averages from 1990 to 1999 as the 

baseline and the predicted 2045-2054 averages as the endpoint (A2 scenario), we can map the 

expected % change in lifespan.  This relatively simple exercise reveals the surprising result that 

lifespan will decrease on average by 12.5% -17.5% worldwide with reductions of 10-20% 

throughout most of the world and changes of up to 40% at high latitudes (Figure 2).   
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Figure 1. A. Natural log of lifespan v. mean annual temperature for 74 species. Although there is clearly

variation around the regression lines, higher order polynomials did not fit significantly better. B. Histogram of

regression slopes. The blue bars are counts for all non-zero regression slopes. The white bars are those that

were not significantly different from zero. The red line indicates the histogram of slopes obtained from

laboratory studies of lifespan and temperature. The clear concordance between slopes from the field (bars) and

slopes from the lab (line) strongly suggests that other factors (predators, food) do not change the average

response to temperature.
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Figure 2. Percent change in ectotherm lifespan over the next 50 years based on IPCC A2 projected 

surface temperatures.   

Since mean lifespan is the inverse of the average mortality rate, this suggests that substantial 

changes in management will be needed to compensate for climate-driven changes in life 

histories, particularly in middle- and high-latitude stocks.  Moreover, increases in mortality tend 

to magnify recruitment fluctuations and the apparent nonlinearity of population dynamics (11).  

The MTE provides a first order approach to incorporating the likely changes in mortality into 

management and recovery plans.  This proposal will extend these results for lifespan to other 

demographically relevant life history traits. 

 

Approach 

Using the MTE as a conceptual foundation, the goal of this proposal is to establish a framework 

for predicting the first-order response to climate change in other demographically relevant life 

history characters, specifically growth, fecundity, age and size at maturity, and natural 

mortality.  Numerous prior studies have demonstrated that these vital rates are strongly 

correlated and driven, in part, by temperature (e.g. 12-13).  What is lacking is an overarching 

synthesis of geographic variation within species across a wide range of taxa that can be used to 

make robust generalizations of how under-studied species will respond.   

The traits listed are all useful in constraining standard stock assessment models.  In addition, 

estimates of population growth (rmax ) and carrying capacity (K) are the frequently the 

cornerstones of data-poor assessment methods.  Savage et al. (19) derive zeroth order 

predictions for the mass and temperature scaling of rmax and K.  Using the scaling relationships 

we infer for life history traits, we can extend Savage’s analysis to make robust first order 

predictions about climate-driven changes in rmax and K.   

Step 1) Compile all available field estimates for species with data from multiple populations and 

use GIS to characterize the local thermal regime.  One might expect that such a database already 

exists.  However, databases that contain life history characters generally ignore trait variation 

within species and databases that focus on geographic variation generally ignore life history 

characters or are limited to a handful of species.  We initially hoped that FishBase would be a 

good place to start, but the data are poorly georeferenced within species.   

We will make use of several sources of data:  We will begin by georeferencing and integrating 

existing databases.  These include FishBase, Fish Traits, the life history databases maintained 

by the AFSC and Pacific Shark Research Center, CA DFG’s nearshore fishes life history 

database, DATLife, and AnAge.  We have already begun georeferencing the citations in 

FishBase.  Second, we will scour the primary literature for publications reviewing geographic 

variation in life history traits.  We have already made substantial progress in this direction, 

though more effort is clearly needed.  Third, we will collect and assimilate gray literature 

reports from state agencies.   

Through these efforts we expect to be able to obtain complete data (defined here as at least 5 

locations with information on growth, fecundity, maturation age and size, and lifespan or 

mortality) on at least 100 species.  In addition, we expect to obtain partial data (a subset of traits 

with limited spatial coverage) on hundreds more species.   
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Step 2)  Characterize the thermal environment.  For each location represented in the trait 

database, we will characterize the thermal environment.  Although applications of the MTE 

typically use only the mean temperature, niche models frequently incorporate additional indices, 

such as the variance in temperature or the minimum and maximum temperatures (e.g. 14).  

These indices will be obtained from global climate databases maintained by NOAA, NASA, 

WorldClim, etc as appropriate.   

Step 3) Synthesize all available trait and temperature data.  To begin, we will evaluate the 

validity of the Boltzmann-Arrhenius temperature dependence of the MTE for each trait.  For 

each species with sufficient data, we will test the Boltzmann-Arrhenius temperature dependence 

against higher order models and models that include temperature x mass interactions.  We will 

also test the other thermal environment indices (min, max, variance, etc) collected in step 2. 

After establishing whether the MTE is an adequate approximation within species we will 

construct a hierarchical model that accounts for phylogeny and spatial autocorrelation.  The 

value of this framework is that it will allow us to make reasonable predictions for the species for 

which we only have partial data sets.  We will extend the methods described by Ives and Zhou 

(15) to handle multivariate responses.  The general framework is a Bayesian hierarchical model 

analogous to general least squares.  That is (assuming that the basic MTE model is adequate) 

                         
    

  
                                             

Where      is the vector log-trait values for species i in location l, M is it’s mean size (mass), 

and T is the mean annual temperature in location l.  The vectors      ,     , and      represent the 

intercepts, mass-scaling exponents, and ‘activation energies’ for each trait.  Under the standard 

MTE, only the intercepts are expected to vary among species and locations.  However we adopt 

a more general framework here to test the idea of constant scaling and temperature dependence.  

The errors             are assumed to be independent across traits, species and locations.  

Phylogenetic and spatial autocorrelation are accounted for in the priors on      ,     , and     .  

Specifically,              in which   is obtained as the tensor product of separate trait (T), 

spatial (S) and phylogenetic (P) covariance functions,          .  A similar 

specification with independent hyperparameters will be used for the mass and temperature 

scaling vectors.  The trait covariance, T, will be assigned a vague inverse Wishart prior.  We 

will use the standard specification for the phylogenetic covariance matrix based on a Brownian 

motion (15) with approximate branch lengths obtained from the Open Tree of Life project 

(www.opentreeoflife.org, 16) or the Integrated Taxonomic Information System (www.itis.gov).  

S will be given by the Matern covariance function widely used in spatial statistics (17).  This 

model can also be generalized by allowing taxonomic variation in the trait covariance matrix 

(18).  We will also test simplified models in which spatial and / or phylogenetic variation for 

each parameter is removed.   

After fitting to the available data, predictions for species with incomplete or missing data can be 

made through this framework using standard tricks for hierarchical, random effects, and 

Gaussian process models (see e.g. 15, 17).  Doing so requires that we can input the mean size, 

temperature, location, and taxonomy for the species to be predicted.  To handle cases where the 

mean size for the predictee is unknown, we will construct an auxiliary hierarchical random 

effects model for mean size that accounts for phylogenetic and spatial autocorrelation.   
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Step 4)  The final step is to take the best fitting hierarchical Bayesian MTE model and GCM 

model output to make species-specific maps of life-history changes over the next 50 years.  We 

will evaluate results for several of the IPCC scenarios to account for uncertainty in GCM 

predictions.   

Benefits 

This proposal specifically addresses FATE research priority #2 in that it will develop spatial 

models of climate effects on growth, maturity, mortality, and fecundity.  By constructing 

statistical models that explicitly account for phylogeny as well as space, we will leverage 

information across related species allowing improved predictions for stocks for which we have 

sparse information.  This will be particularly useful for managing data-poor fisheries.   

Coupling these statistical models with global climate forecasts will allow us to construct 

spatially explicit predictions of demographically relevant traits over the next 50 years.  This will 

be particularly useful for evaluating whether strategic changes in management are needed to 

account for climate change.   

In addition, this database will allow us to address some basic science questions as well, 

including: how well to classic life history invariants hold up when looked at within species?  

Does the MTE generally work within species in the field? Is there a phylogenetic signal in the 

mean response to temperature? Are MTE predictions within species biased for heavily exploited 

populations?  Are the deviations from the MTE driven by fishing mortality predictable?   

Deliverables 

o A global database of spatially-explicit life history characters and local environmental drivers 

o Spatially explicit estimates of life history traits, rmax and K for all ‘data poor’ species 

o Global projections of climate-driven changes in life history traits. 

o At least 2 peer-reviewed publications and conference presentations 

o Final report to FATE 

Year 1 Year 2 

o Identify and incorporate gray literature 

estimates of life-history characters  

o Targeted acquisition of complete trait sets 

for 100 species 

o Complete creation of database  

o Present at annual FATE meeting. 

o Develop models to integrate across taxa 

o Test predictions of MTE for each trait 

o Produce 50 year projections using several 

climate scenarios 

o Publish papers 

o Present at annual FATE meeting 
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